


10-bit up to 130 MSPS low-power high-speed pipeline ADC

OVERVIEW

065TSMC ADC 06 is 10-bit up to 130 MSPS lowpower high-speed ADC which is based on pipelined architecture. ADC contains a five main blocks: sample and hold, core ADC, digital error correction, timing generation, reference voltage. The block requires: 1.08÷1.32 V analog supply, 1.08÷1.32 V digital supply; reference current 4.95÷5.05 uA; differential reference voltage 1.08÷1.32 V and 0 V; differential input clock with duty cycle 45÷55 %. ADC supports standby mode. There is also the ability to configure the operating modes of the ADC with digital registers: register en d<1:0> controls the differential input clock, register cr<11:0> controls the modes of the core ADC, register adj sh<3:0> adjusts current of the sample and hold, register adj md<3:0> adjusts current of the core ADC.

IP technology: TSMC CMOS LP 65 nm. IP status: silicon proven.

Area: 0.28mm².

ELECTRICAL CHARACTERISTICS	ELECTRICAL	CHARACTERISTICS
----------------------------	------------	-----------------

Parameter	Symbol	Conditions	Value			II.
			min	typ.	max	Units
Operating temperature range	Tj	-	-40	+27	+125	°C
Analog blocks supply voltage	V _{dd_a}	-	1.08	1.2	1.32	V
Digital blocks supply voltage	V _{dd_d}	-	1.08	1.2	1.32	V
Differential reference voltage	V _{refp}	-	1.08	1.2	1.32	V
	V _{refn}	-	-	0	-	V
Reference current	I _{ref}	-	4.95	5	5.05	uA
Duty cycle	S	-	45	50	55	%
Resolution	Ν	-	-	10	-	bit
Sampling rate	Fs	-	-	-	130	MSPS
Power dissipation	P _{dd}	$F_s = 130 \text{ MSPS}$	-	34	-	mW
		$F_s = 80 MSPS$	-	25	-	mW
		$F_s = 50 MSPS$	-	21	-	mW
Current consumption		$F_s = 130 MSPS$	-	28	-	mA
	I _{cc}	$F_s = 80 MSPS$	-	20	-	mA
		$F_s = 50 \text{ MSPS}$	-	17	-	mA
Standby current	Istb	-	-	10	-	uA
Differential input voltage range	A _{IN p-p}		-	1.2	-	V
peak-to-peak		-				
Input common mode voltage	U	-	-	0.6	-	V
Full power bandwidth	F _B	$F_s = 130 \text{ MSPS}$	-	260	-	MHz
		$F_s = 80 MSPS$	-	160	-	MHz
		$F_s = 50 MSPS$	-	100	-	MHz
Spurious-free dynamic range	SFDR	$F_s = 50 - 130$ MSPS, Fin = 3 - 8.125 MHz	-	68	-	dB
Signal-to-noise ratio	SNR	$F_s = 50 - 130$ MSPS, $Fin = 3 - 8.125$ MHz	-	60	-	dB
Signal-to-noise and distortion ratio	SINAD	$F_s = 80 - 130$ MSPS, Fin = 5 - 8.125 MHz	-	59	-	dB
		$F_s = 50$ MSPS, $Fin = 3.125$ MHz	-	60	-	dB
Effective number of bits	ENOB	$F_s = 130 \text{ MSPS}$	-	9.1	-	bit
		$F_s = 80 \text{ MSPS}, F_s = 50 \text{ MSPS}$	-	9.3	-	bit
Differential nonlinearity	DNL	$F_s = 80 MSPS$	-	±0.5	-	LSB
Integral nonlinearity	INL	$F_s = 80 \text{ MSPS}$	-	±1	-	LSB
Input high-logic level	V_{IH}	For digital inputs	$0.7 V_{dd d}$	-	-	V
Input low-logic level	V _{IL}		-	-	$0.3 V_{dd d}$	V