

10-bit 1-channel 50/100 MSPS ADC

SPECIFICATION

1. FEATURES

- TSMC CMOS 65 nm
- Resolution 10 bit
- 1 channel
- Different power supplies for digital (1.2 V) and analog parts (1.2 V)
- Sampling rate up to 100 MSPS
- Stand-by mode (current consumption 10 uA)
- Low-power dissipation: 34 mW at 100 MSPS 21 mW at 50 MSPS
- Differential full-scale input range peak-to-peak 1 V
- Dynamic performance:
 66.0 dB SFDR, 54.2 dB SINAD at 50 MSPS and fin = 10.7 MHz
 66.3 dB SFDR, 53.0 dB SINAD at 100 MSPS and fin = 10.7 MHz
- Differential nonlinearity ±0.79 LSB
- Integral nonlinearity ±0.94 LSB
- Compact die area 0.26 mm²
- Portable to other technologies (upon request)

2. APPLICATION

- WiFi, WiMax
- Mobile Communications
- High quality imaging video systems
- Data acquisition systems
- Portable ultrasound and digital beam-forming systems

3. OVERVIEW

The 10-bit 50/100 MSPS ADC employs a high-performance front-end sample-and-hold with differential multistage pipelined architecture and output error correction logic. The biasing circuit and the clock generator are also included to provide a complete ADC. The ADC operates with sampling rate up to 100 MSPS and a corresponding input clock up to 200 MHz (input clock is divided by two). The ADC can be configured to achieve addition power saving at low sampling rate, supports stand-by mode and features the excellent dynamic and static performance, wide bandwidth inputs, low power consumption and compact die area.

The block is designed on TSMC CMOS 65 nm technology.

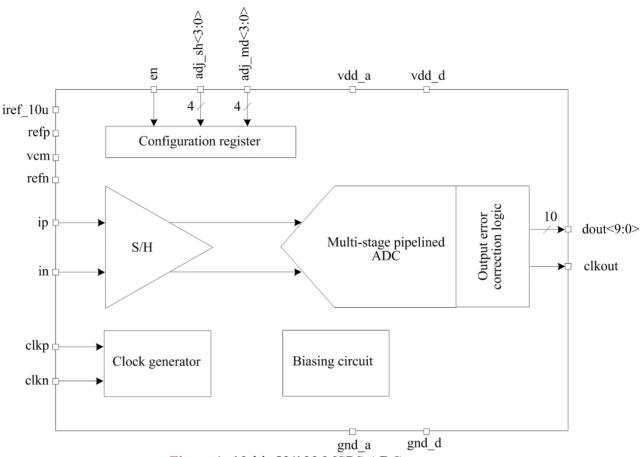


Figure 1: 10-bit 50/100 MSPS ADC structure

5. PIN DESCRIPTION

Name	Direction	Description
iref_10u	Ι	Reference current (10 uA)
ip in	- I	Analog differential input (1 V peak-to-peak)
clkp clkn	- I	200 MHz differential clock input
refp	Ι	Positive reference voltage (0.8 V)
vcm	Ι	Common mode voltage (0.55 V)
refn	Ι	Negative reference voltage (0.3 V)
en	Ι	ADC enable: "0" disabled "1" enabled
adj_sh<3:0>	Ι	Register of adjust reference current the sample and hold:"0000""0001"5 uAwith step of 5 uA"1111"75 uA
adj_md<3:0>	Ι	Register of adjust reference current the multi-stageADC:"0000"unused"0001"5 uAwith step of 5 uA"1111"75 uA
dout<9:0>	0	Output data
clkout	0	100 MHz output clock
vdd_a	I/O	Analog block supply voltage (1.2 V)
vdd_d	I/O	Digital blocks supply voltage (1.2 V)
gnd_a	I/O	Analog blocks ground
gnd_d	I/O	Digital blocks ground

6. FUNTIONAL DESCRIPTION

The input clock is divided by two and after t_{d1} time analog input voltage is sampled by the positive edge. The output data after the conversion latency of 8 clock cycles is latched.

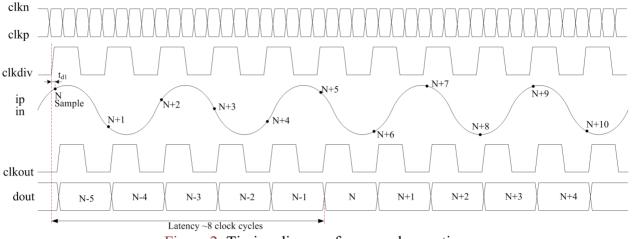


Figure 2: Timing diagram for normal operation

7. CURRENT CONSUMPTION PROGRAMMABILITY

There is also ability to adjust reference current the sample-and-hold and multi-stage pipeline ADC. The values of reference current determine current consumption. Adjustable reference current allows configuring operation mode related to static, dynamic performance and sampling rate.

 $I_{DC} = 5 \text{ uA} \cdot 440 \cdot \text{adj_sh} + 5 \text{ uA} \cdot 440 \cdot \text{adj_md},$

where $adj_sh - decimal$ representation register of adjust reference current the sample and hold; $adj_md - decimal$ representation register of adjust reference current the multi-stage pipeline ADC.

8. LAYOUT DESRIPTION

8.1 TECHNOLOGY OPTIONS

ADC is designed under TSMC 65 nm LP CMOS technology process with following options:

- 4x1z1u metal option
- 1.2 V standard Vt MOS
- 1.2 V low Vt MOS
- 2.0 fF/um² MIM capacitor
- P+polysilicon OP resistor

8.2 PHYSICAL DIMENTIONS

ADC layout dimensions are given in the table 1.

Table 1: Block dimension.

Dimension	Value	Unit
Height	410	um
Width	630	um

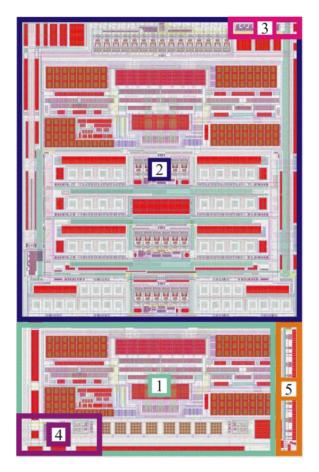


Figure 3: ADC layout

- 1. Sample and hold
- 2. Multistage ADC
- 3. Output error correction logic
- 4. Clock generator
- 5. Biasing circuit

9. INTEGRATION GUIDELINES

9.1 PLACE AND ROUTE GUIDELINES

- 1) ADC analog inputs ip and in signals should be connected to analog IO PADs or an internal analog circuits (intermediate frequency amplifier, filter). IO PADs should not have an internal resistor to increase bandwidth.
- 2) Wiring of analog inputs should be symmetrical and as short as possible.
- 3) Noisy, power and high-frequency circuits should not place near ADC.
- 4) Minimum space 40 um between ADC and other circuits should be kept.
- 5) Minimum metal wiring width is 50 um for vdd_a and gnd_a. Multiple layers of metal can be used to reduce layout space.
- 6) Minimum metal wiring width is 10 um for vdd_d and gnd_d. Multiple layers of metal can be used to reduce layout space.
- 7) Allowable total resistance of vdd_a and gnd_a are 0.5 Ohm. Blocking capacitors should be added and placed as close as possible.
- 8) Allowable total resistance of vdd_a and gnd_a are 2 Ohm. Blocking capacitors should be added and placed as close as possible.

10. OPERATING CHARACTERISTICS

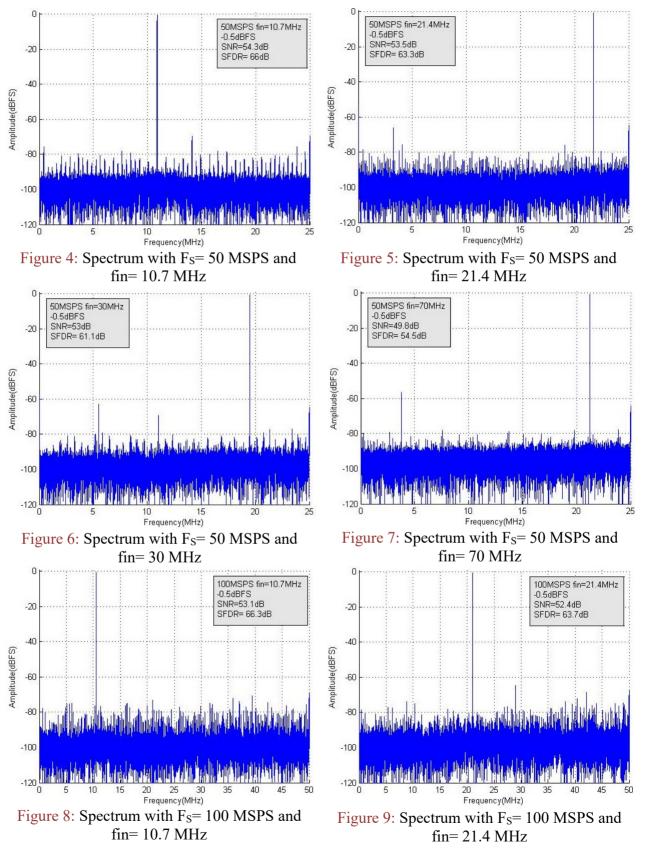
10.1 TECHNICAL CHARACTERISTICS

Technology	TSMC CMOS 65 nm
Status	silicon proven
Area	0.26 mm^2

10.2 ELECTRICAL CHARACTERISTICS

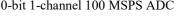
The values of electrical characteristics are specified for $V_{dd_a}=1.14\div1.26$ V, $V_{dd_d}=1.14\div1.26$ V and $T_j=-40\div+85^{\circ}C$, typical values are at $V_{dd_a}=1.2$ V, $V_{dd_d}=1.2$ V, $T_j=+27^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Conditions	Value			TI *4
			min	typ.	max	Unit
Operating temperature	Tj	-	-40	27	+85	°C
range	- J			_,		_
		Power Supply Requirem				
Analog supply voltage	V _{dd_a}	-	1.14	1.2	1.26	V
Digital supply voltage	V_{dd_d}	-	1.14	1.2	1.26	V
Current consumption in	Icn	$F_{S}=50 \text{ MSPS}$	-	17	-	mA
normal mode	Ien	$F_{S}=100 \text{ MSPS}$	-	28	-	mA
Current consumption in stand-by mode	I_s	-	-	10	-	uA
Power consumption in	P _{cn}	$F_{S}=50 MSPS$	-	21	-	mW
normal mode	P _{cn}	$F_s = 100 \text{ MSPS}$	-	34	-	mW
		DC Accuracy				
Resolution	Ν	-	_	10	-	bit
Differential nonlinearity	DNL	$F_s = 50 MSPS$	_	±0.79	-	LSB
Integral nonlinearity	INL	$F_s = 50 MSPS$	-	±0.94	-	LSB
Offset error	OE	$F_s = 50 MSPS$	-	±2.0	-	LSB
Gain error	GE	$F_s = 50 MSPS$	-	±0.11	-	LSB
		Analog Inputs				•
Differential full-scale				1		X 7
input range	A _{IN p-p}	-	-	1	-	V
Input common-mode	V		0.5		0.55	V
voltage	V_{cm_in}	-	0.5	-	0.55	v
Input capacitance	C_{eff_in}	-	-	4	-	pF
Input resistance	R _{eff_in}	-	-	100	-	kOhm
		Digital Inputs and Out	outs			
Output logic coding	-	-	(Offset bin	ary	code
Input logic-level high	V _{IH}	-	$0.7 V_{dd d}$	-	-	V
Input logic-level low	V _{IL}	-	_	-	$0.3 V_{dd d}$	V
		Timing Information	1			•
Input clock	F _{clk}	-	-	-	200	MHz
Sampling rate	Fs	F _{clk} /2	10	-	100	MSPS
Duty cycle	S	-	45	50	55	%
Latency	L	-	-	8	-	clock cycles
· · · · · · · · · · · · · · · · · · ·		External Reference Requir	ements			· · · ·
Reference current	I _{ref}	-	9.9	10	10.1	uA
Positive reference voltage	V _{refp}	_	-	0.80	-	V
Common mode voltage	V _{cm}	_	-	0.55	-	V
Negative reference voltage	V _{refn}	-	-	0.30	-	V

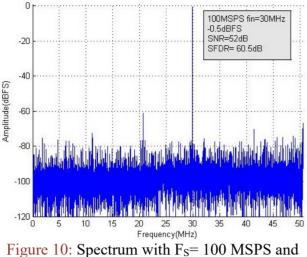


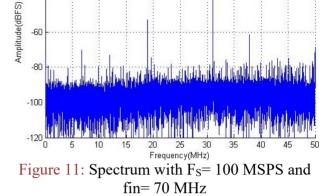
Parameter	Symbol	Conditions	Value			Unit
			min	typ	max	
		ynamic characteristic at Fs=	50 MSPS			1
Input frequency range	fin	-	0	-	530	MHz
Signal-to-noise ratio		fin = 10.7 MHz	-	54.3	-	- dB
	SNR	fin = 21.4 MHz	-	53.5	-	
	SINK	fin = 30 MHz	-	53.0	-	
		fin = 70 MHz	-	49.8	-	
		fin = 10.7 MHz	-	54.2	-	
Signal-to-noise and distortion ratio	SINAD	fin = 21.4 MHz	-	53.4	-	dB
	SINAD	fin = 30 MHz	-	52.9	-	uБ
		fin = 70 MHz	-	49.6	-	
		fin = 10.7 MHz	-	8.7	-	
	ENOD	fin = 21.4 MHz	-	8.6	-	1.4
Effective number of bits	ENOB	fin = 30 MHz	-	8.5	-	bits
		fin = 70 MHz	-	8.0	-	
		fin = 10.7 MHz	_	78	_	
Worst second or third		fin = 21.4 MHz	_	81	_	
harmonic	-	fin = 30 MHz	-	67	_	dB
		fin = 70 MHz	-	76	_	1
		fin = 10.7 MHz (see Fig. 18)	_	64	_	dB
Spurious-free dynamic		fin = 21.4 MHz (see Fig. 20)	-	61		
range	SFDR	fin = 30 MHz (see Fig. 20)	-	58	-	
lunge		$\frac{\text{fin} = 30 \text{ WHz}}{\text{fin} = 70 \text{ MHz}}$		54.5	-	
		fin = 10.7 MHz	-	64	-	╂────
Two-tone spurious-free-	Two-tone SFDR	fin = 21.4 MHz	_	61	-	dB
dynamic range		fin = 30 MHz	-	58	-	
		fin = 10.7 MHz (see Fig. 19)	-	74	-	dB
Intermodulation	IMD3	fin = 21.4 MHz (see Fig. 21)	-	76		
distortion third-order	INIDS	fin = 30 MHz (see Fig. 23)	-	70	-	
Full power bandwidth	F _B			560	-	MHz
		ynamic characteristic at Fs=	- 100 MSPS	500		IVIIIZ
Input frequency range	fin	manne characteristic at rs-	0	-	530	MHz
	1111	fin = 10.7 MHz	•	53.1		IVITIZ
			-		-	dB
Signal-to-noise ratio	SNR	$\frac{\text{fin} = 21.4 \text{ MHz}}{\text{C}}$	-	52.4	-	
C		fin = 30 MHz	-	52.0	-	
		fin = 70 MHz	-	48.7	-	
o: 1, · · ·		fin = 10.7 MHz	-	53.0	-	- dB
Signal-to-noise and	SINAD	fin = 21.4 MHz	-	52.2	-	
distortion ratio		fin = 30 MHz	-	51.8	-	
		fin = 70 MHz	-	48.5	-	
	ENOB	fin = 10.7 MHz	-	8.5	-	bit
Effective number of bits		fin = 21.4 MHz	-	8.4	-	
		fin = 30 MHz	-	8.3	-	
		fin = 70 MHz	-	7.8	-	
		fin = 10.7 MHz	-	72	-	- dB
Worst second or third harmonic		fin = 21.4 MHz	-	67	-	
		fin = 30 MHz	-	67	-	
		fin = 70 MHz	-	59	-	
Spurious-free dynamic range		fin = 10.7 MHz	-	66.3	-	
	SEDD	fin = 21.4 MHz	-	63.7	-	dB
	SFDR	fin = 30 MHz	-	60.5	-	
lange						
lange		fin = 70 MHz	-	52.1	-	

Table "Electrical characteristics" (continue)



11. TYPICAL CHARACTERISTICS


065TSMC_ADC_08 10-bit 1-channel 100 MSPS ADC



100MSPS fin=70MHz

-0.5dBFS SNR=48.7dB

SEDR= 52 1dB

П

-20

-40

fin= 30 MHz

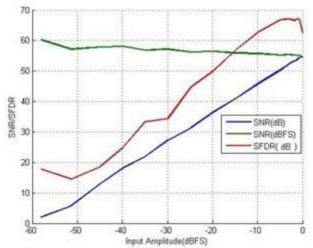
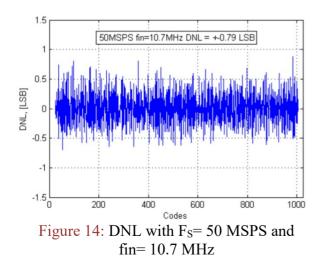



Figure 12: SNR/SFDR vs. input amplitude with F_S = 50 MSPS and fin= 10.7 MHz

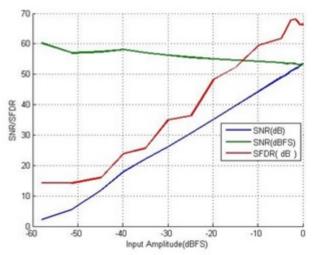
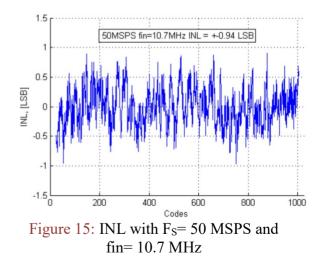
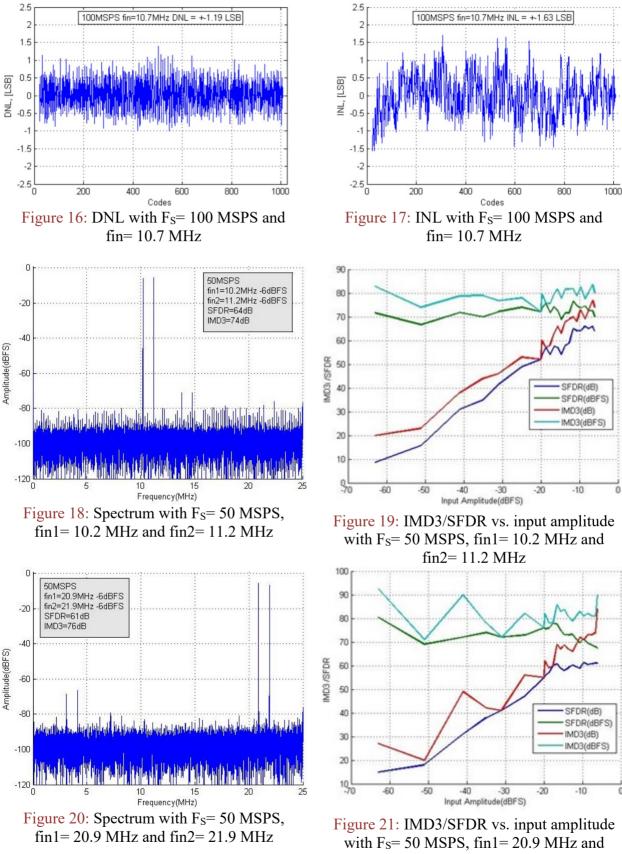
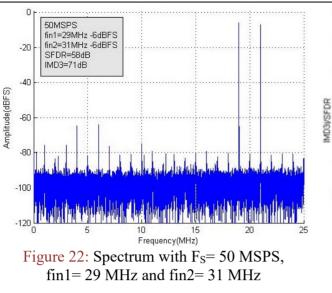




Figure 13: SNR/SFDR vs. input amplitude with F_S = 100 MSPS and fin= 10.7 MHz


065TSMC_ADC_08 10-bit 1-channel 100 MSPS ADC

fin2= 21.9 MHz

065TSMC_ADC_08 10-bit 1-channel 100 MSPS ADC

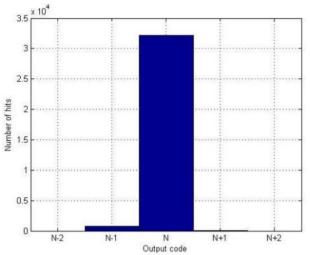


Figure 24: Input histogram $F_s = 50$ MSPS

12. DELIVERABLES

Depending on license type IP may include:

- Schematic or NetList
- Layout or blackbox
- Verilog, lef and lib files
- Extracted view (optional)
- GDSII
- DRC, LVS, antenna report
- Test bench with saved configurations (optional)
- Documentation

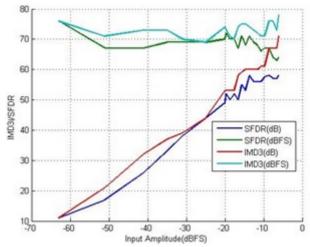


Figure 23: IMD3/SFDR vs. input amplitude with F_S = 50 MSPS, fin1= 29 MHz and fin2= 31 MHz

REVISION HISTORY

- 1. From version 1.0:
 - Section 3 was changed (refer to page 1)
 - Section 4 was changed (refer to page 2)
 - Section 5 was changed (refer to page 3)
 - Subsection 10.2 was changed (refer to page 5)
- 2. From version 1.1:
 - Section 1 was changed (refer to page 1)
 - Section 3 was changed (refer to page 1)
 - Section 4 was changed (refer to page 2)
 - Section 5 was changed (refer to page 3)
 - Section 6 shifted to section 8
 - Section 6 was added (refer to page 4)
 - Section 7 shifted to section 9
 - Section 7 was added (refer to page 4)
 - Section 8 was changed (refer to page 4)
 - Section 9 shifted to section 10
 - Section 9 was added (refer to page 6)
 - Subection 10.2 was changed (refer to page 7)