065TSMC_ADC_11

12-bit 50/100/125 MSPS 4-channel pipeline ADC

OVERVIEW

065TSMC_ADC_11 employs a high-performance differential pipeline architecture. The ADC consists of LVDS receiver, reference currents circuit, reference voltage circuit and 4 channels, which contain a core ADC and output logic. The ADC requires: $1.08 \div 1.32 \mathrm{~V}$ analog supply, $1.08 \div 1.32 \mathrm{~V}$ digital supply, reference current $9.9 \div 10.1 \mathrm{uA}$ and differential input clock. The ADC supports standby mode which does possible state with minimum power consumption. There is also the ability to configure the operating modes of the ADC by using digital registers.
IP technology: TSMC CMOS 65 nm .
IP status: silicon proven.
Area: $4.58 \mathrm{~mm}^{2}$.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions		Value			Units
				min	typ.	max	
Analog blocks supply voltage	$\mathrm{V}_{\mathrm{dd12a}}$		-	1.08	1.2	1.32	V
Digital blocks supply voltage	$\mathrm{V}_{\mathrm{dd12}}$		-	1.08	1.2	1.32	V
	$\mathrm{V}_{\mathrm{dd} 25 \mathrm{~d}}$		-	2.25	2.5	2.75	V
Junction temperature	T_{j}		-	-40	+27	+85	${ }^{\circ} \mathrm{C}$
Resolution	N		-	-	12	-	bit
Sample rate	Fs		-	50	100	125	MSPS
Current consumption	$\mathrm{I}_{\text {CC }}$	For four channels	$\mathrm{V}_{\mathrm{dd} 12 \mathrm{a}}+\mathrm{V}_{\mathrm{dd} 12 \mathrm{~d}}, \mathrm{~F}_{\mathrm{S}}=50 \mathrm{MSPS}$	-	145	-	mA
			$\mathrm{V}_{\mathrm{dd12a}}+\mathrm{V}_{\mathrm{dd} 12 \mathrm{~d}}, \mathrm{~F}_{\mathrm{S}}=100 \mathrm{MSPS}$	-	210	-	mA
			$\mathrm{V}_{\mathrm{dd} 12 \mathrm{a}}+\mathrm{V}_{\mathrm{dd} 12 \mathrm{~d}}, \mathrm{~F}_{\mathrm{S}}=125 \mathrm{MSPS}$	-	245	-	mA
		@ $\mathrm{V}_{\mathrm{dd} 25 \mathrm{~d}}$		-	1.6	-	mA
Differential input voltage range	$\mathrm{A}_{\text {IN p-p }}$		-	-	1	-	Vp-p
Input common mode voltage	V_{CM}		-	-	0.6	-	V
Spurious free dynamic range	SFDR	$\mathrm{F}_{\mathrm{S}}=50 \mathrm{MSPS}$	$\begin{array}{\|l} \hline \mathrm{F}_{\mathrm{IN}}=10.7 \mathrm{MHz} \\ \hline \mathrm{~F}_{\mathrm{IN}}=21.4 \mathrm{MHz} \\ \hline \end{array}$	65	73.7	75.5	dB
		$\mathrm{F}_{\mathrm{S}}=100 \mathrm{MSPS}$	$\mathrm{F}_{\text {IV }}=10.7 \mathrm{MHz}$	65	73.4	74.4	dB
			$\mathrm{F}_{\text {IV }}=21.4 \mathrm{MHz}$	64	74.3	73	
		$\mathrm{FS}_{\text {S }}=125 \mathrm{MSPS}$	$\mathrm{F}_{\text {IV }}=10.7 \mathrm{MHz}$	-	70.8	-	dB
			$\mathrm{F}_{\text {IV }}=21.4 \mathrm{MHz}$	-		-	
Signal-to-noise ratio	SNR	$\mathrm{F}_{\mathrm{S}}=50 \mathrm{MSPS}$	$\mathrm{F}_{\text {IV }}=10.7 \mathrm{MHz}$	59.5	59.3	61.1	dB
			$\mathrm{F}_{\text {IV }}=21.4 \mathrm{MHz}$				
		$\mathrm{F}_{\mathrm{S}}=100 \mathrm{MSPS}$	$\mathrm{F}_{\text {IV }}=10.7 \mathrm{MHz}$	60	59.3	61.8	dB
			$\mathrm{F}_{\text {IV }}=21.4 \mathrm{MHz}$	59	59.7	60.9	
		$\mathrm{F}_{\mathrm{S}}=125 \mathrm{MSPS}$	$\mathrm{F}_{\text {IN }}=10.7 \mathrm{MHz}$	-	58	-	dB
			$\mathrm{F}_{\text {IN }}=21.4 \mathrm{MHz}$	-	58.1	-	
Full power bandwidth	F_{B}	@ 50MSPS; @100	MSPS	-	510	-	MHz
Differential nonlinearity	DNL	$\mathrm{F}_{\mathrm{S}}=50 \mathrm{MSPS}$	$\mathrm{F}_{\text {IN }}=10.7 \mathrm{MHz}$	-	1.23	-	LSB
		$\mathrm{F}_{\mathrm{S}}=100 \mathrm{MSPS}$		-	1.1	-	LSB
Integral nonlinearity	INL	$\mathrm{F}_{\mathrm{S}}=50 \mathrm{MSPS}$	$\mathrm{F}_{\text {IN }}=10.7 \mathrm{MHz}$	-	2.74	-	LSB
		$\mathrm{F}_{\mathrm{S}}=100 \mathrm{MSPS}$		-	3.34	-	LSB
Input logic high level	$\mathrm{V}_{\text {IH }}$	For digital inputs		$0.7 \mathrm{~V}_{\mathrm{dd} 12 \mathrm{~d}}$	-	$\mathrm{V}_{\text {dd12 }}$	V
Input logic low level	$\mathrm{V}_{\text {IL }}$			0	-	$0.3 \mathrm{~V}_{\mathrm{dd1} 12 \mathrm{~d}}$	V

