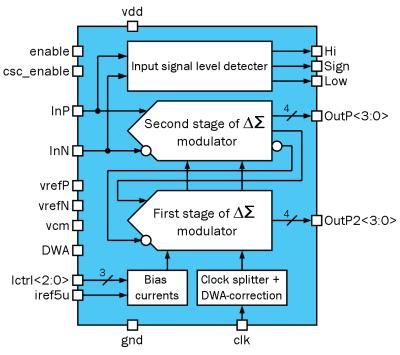


12-bit 800 kSPS cascade delta-sigma ADC


OVERVIEW

The block is third order cascade (2-1) deltasigma ADC with 5-level quantizers in both stages. The block consists of: two deltasigma modulators second and first order, coupled in series and combined by noise cancellation logic; clock splitter; block of bias currents, tunable (3-bit control); DWA-correction of capacitors' mismatch; input signal level detection. Output signal is represented in thermometer code at the output of each stage. There is a possibility to disable the second stage of modulator, DWA correction. Tuning of bias current for operational amplifiers with 3-bit control included. Common mode voltage -0.9 V; recommended values of reference voltages: 0.9 ± 0.4 V; recommended differential input signal amplitude - 0.64 V; allowable duty cycle: $50 \pm 5\%$.

IP technology: TSMC SiGe BiCMOS 180 nm.

IP status: silicon proven.

Area: 0.144mm².

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Value			Units
			min	typ.	max	Units
Supply voltage	V_{dd}	-	1.65	1.8	1.95	V
Reference voltage	V_{ref}	-	0.5	0.9	1.3	V
	Vcm	-	-	0.9	-	
Operating temperature	Tj	-	-45	+27	+85	°C
Resolution	N	-	-	12	-	bit
Clock frequency	Felk	-	8	25	32	MHz
Sampling rate	Fs	-	-	800	-	kSPS
Duty cycle	S	-	45	50	55	%
Oversampling ratio	OSR	-	8	32	40	-
Signal bandwidth	BW	-	400	-	500	kHz
Signal to noise ratio	SNR	$F_{clk} = 25 \text{ MHz}, Fin = 402 \text{ kHz}, V_{in_p-p} = 1.28 \text{V}$	-	82.9	-	dB
		$F_{clk} = 25 \text{ MHz}, Fin = 200 \text{ kHz}, V_{in_p-p} = 1.28 \text{V}$	-	81.7	-	
		$\begin{aligned} F_{clk} &= 32 \text{ MHz, Fin} = 125 \text{ kHz,} \\ V_{in_p-p} &= 1.28 V \end{aligned}$	-	77.8	-	
		$F_{clk} = 8$ MHz, Fin = 125 kHz, $V_{in_p-p} = 1.28V$	-	43.3	-	
Stand-by power	P_{stb}	-	0.014	0.023	0.054	uW
Supply power	P _{supply}	-	2.13	3.19	3.78	mW
Common mode voltage	U	-	-	0.9	-	V
Supply current	I _{supply}	-	1.29	1.77	1.94	mA
Input high-logic level	V_{IH}	For digital inputs	$0.7V_{dd}$	-	$V_{dd}+0.25$	V
Input low-logic level	$V_{ m IL}$		-0.25	ı	$0.3V_{dd}$	V