180TSMC_DAC_07

12-bit 2-channel up to 50 MSPS current steering DAC

OVERVIEW

180TSMC_DAC_07 is a 12 -bit 50 MSPS dual current steering DAC contains two DAC cores, reference current, bandgap, configuration register. Core DAC is based on current steering architecture and contains control logic, current source, switches array and reference voltage. There are two operation modes: with external reference current and internal reference current, which independent from voltage supply, temperature and dependent from process variations of resistor. DAC has a feature of adjusting output current. A segmented DAC architecture and Q^{2} random walk algorithm are used. DAC requires: $3.0 \div 3.6 \mathrm{~V}$ analog supply, $3.0 \div 3.6 \mathrm{~V}$ digital supply, differential input clock signal with duty cycle $45 \div 55 \%$. 12-bit 50 MSPS dual current steering DAC supports standby mode.

IP technology: TSMC CMOS 180 nm .
IP status: silicon proven.
Area: $0.68 \mathrm{~mm}^{2}$.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions		Value			Units
				min	typ.	max	
Analog blocks supply voltage	$\mathrm{V}_{\text {dd_a }}$	Pin DAC_avdd		3.0	3.3	3.6	V
Digital blocks supply voltage	$\mathrm{V}_{\text {dd_d }}$	Pin DAC_dvdd		3.0	3.3	3.6	V
Operating temperature range	T_{j}	-		-40	+27	+125	${ }^{\circ} \mathrm{C}$
Reference current	$\mathrm{I}_{\text {ref }}$	-		9.8	10	10.2	uA
Output current range	Iout p-p	DAC_CC $<3: 0>=$ " 0000 "		-	5	-	mA
		DAC_CC $<3: 0>=$ " 0101 "		-	10	-	mA
		DAC_CC $<3: 0>=$ "1111"		-	20	-	mA
Resolution	N	-		-	12	-	bit
Duty cycle	S	-		45	50	55	\%
Sampling rate	F_{S}	-		0	-	50	MSPS
Standby current	$\mathrm{I}_{\text {STB }}$	-		-	100	-	nA
Power dissipation	P_{cn}	DAC_CC $<3: 0>=$ " 0101 "		-	75.24	-	mW
Current consumption	I_{cn}	DAC_CC $<3: 0>=$ "0101"		-	22.8	-	mA
Spurious-free dynamic range	SFDR	$\begin{aligned} & \text { Fs = } 50 \mathrm{MSPS}, \\ & \text { DAC_CC }<3: 0>=" 0101 " \end{aligned}$	$\mathrm{F}_{\text {in }}=1.575 \mathrm{MHz}$	-	88	-	dB
			$\mathrm{F}_{\text {in }}=11.513 \mathrm{MHz}$	-	89	-	dB
Signal-to-noise ratio	SNR		$\mathrm{F}_{\text {in }}=1.575 \mathrm{MHz}$	-	70	-	dB
			$\mathrm{F}_{\text {in }}=11.513 \mathrm{MHz}$	-	70	-	dB
Signal-to-noise anddistortion ratio	SINAD		$\mathrm{F}_{\text {in }}=1.575 \mathrm{MHz}$	-	70	-	dB
			$\mathrm{F}_{\text {in }}=11.513 \mathrm{MHz}$	-	70	-	dB
Input high-logic level	$\mathrm{V}_{\text {IH }}$	-		$0.7 \mathrm{~V}_{\text {dd d }}$	-	-	V
Input low-logic level	$\mathrm{V}_{\text {IL }}$	-		-	-	$0.3 \mathrm{~V}_{\text {dd_d }}$	V

