

Power Management Unit

SPECIFICATION

1 FEATURES

- iHP SG25H4 SiGe BiCMOS 0.25 um
- Bandgap voltage source 1.12 V
- Constant current source
- 500 Hz to 140 kHz frequency generator
- Standby mode
- Portable to other technologies (upon request)

2 APPLICATION

- Battery powered devices
- Core voltage
- Supply voltage sensitive circuits
- Power solutions
- Clocking systems

3 OVERVIEW

PMU IP includes following components: Bandgap reference voltage source, reference current sources and reference frequency generator. Bandgap source forms temperature, power supply and process variations independent voltage.

Reference current sources provide stable output currents which are independent of process/voltage/temperature variations if external resistor is used (CS = "0") or dependent of process corner and temperature of internal resistor rppd (CS = "1").

Reference frequency generator could operate in two modes: XTALL mode (OSC_MODE = "0") and TCXO mode (OSC_MODE = "1"). In XTALL mode external resonator is used, while in TCXO mode external TCXO provides input frequency signal, which is buffered and additionally divided. There are two output frequencies: undivided reference frequency (CLK_REF output) and programmable (OSC_CDiv<7:0>) divided frequency (CLK_REF_DIV). To achieve 50% duty cycle at CLK_REF_DIV output there is additional division-by-two stage embedded in frequency divider, which is turned on by OSC_Div2 = "1".

4 **STRUCTURE**

Figure 1: Power Management Unit application diagram with external quartz resonator for frequency generation

Figure 2: Power Management Unit application diagram with external frequency generator

5 PIN DESCRIPTION

Name	Direction	Description					
Bandgap and current sources							
Iref_22u<1:10>	0	22uA output reference current (effluent)					
Iref_2u<1:20>	0	2uA output reference current (effluent)					
Iref_1u<1:20>	0	1uA output reference current (effluent)					
	Ι	Current source mode selection:					
CS		"0" based on external resistor (default)					
		"1" based on internal resistor					
Rext	Ι	External resistor connection node					
		Bandgap block enable:					
EN_BG	Ι	"0" enabled					
		"1" disabled					
Vref_BG_BUF	0	Buffered bandgap reference voltage					
Vref_BG	IO	Bandgap reference voltage					
Reference frequency gen	erator						
XTO	ΙΟ	External quartz resonator 1 st connection node; TCXO					
МО		connection					
XTI	IO	External quartz resonator 2 nd connection node					
EN_OSC	Ι	Oscillator block enable/disable:					
		"0" enabled					
		"1" disabled					
OSC_MODE	Ι	Oscillator operating mode:					
		"0" with external quartz resonator (default)					
		"1" with external TCXO					
		Internal oscillator capacitor setting:					
		"000" 9pF					
OSC_CAP<3:0>	I	001 12pF "010" 15 - F					
		$\begin{array}{ccc} 010 & 15pr \\ 0112 & 18pr \left(default \right) \end{array}$					
		$\begin{array}{c} \text{OII} \qquad \text{Iopr} (\text{default}) \\ \text{with stop of } 2nE \end{array}$					
		with step of 5pr "111" 30pF					
		Output frequency division coefficient:					
OSC_CDiv<7:0>							
		"00000001" 1					
	Ι	" $(00000010" - 2 (default))$					
		with step of 1					
		"111111111" 255					
OSC_Div2	Ι	Additional dividing-by-2 mode for 50% duty cycle:					
		"0" additional dividing disabled					
		"1" additional dividing enabled (default)					
CLK_REF	0	Reference frequency output					
CLK_REF_DIV	Ο	Divided reference frequency output					
VDD	Р	Supply voltage 2.5 V					
GND	Р	Ground node					

Note: I – input, O – output, IO – input/output, P – power line

6 FUNCTIONAL DESCRIPTION

Power management unit (PMU) is used to provide bandgap reference voltage, stable reference currents and reference clock frequency. $EN_BG = "1"$ enables bandgap voltage reference source and current sources. To enable reference frequency generator $EN_BG = "1"$ and $EN_OSC = "1"$. For standby mode $EN_BG = "0"$ and $EN_OSC = "0"$.

6.1 BANDGAP VOLTAGE SOURCE AND CURRENT SOURCES

 $EN_BG = "1"$ enables both bandgap voltage source and current sources. Bandgap reference voltage 1.12V is available at Vref_BG output. This output is low power, so no any resistive load is acceptable there. It is supposed that no current will flow into or out of this node. Buffered version of bandgap voltage is available at Vref_BG_BUF output, which is capable to drive down to 2 kOhm low resistive load. Please note, that voltage at Vref_BG_BUF node could slightly differs from voltage at Vref_BG node because of buffer offset due to process variations. Output reference currents are available at corresponding outputs Iref_22u<1:10>, Iref_2u<1:20> and Iref_1u<1:20>. The currents are independent of process/voltage/temperature variations if external resistor is used (CS = "0") or dependent of process corner and temperature of internal resistor rppd (CS = "1"). External resistor should be connected to Rext pin of PMU.

6.2 **REFERENCE FREQUENCY GENERATOR**

Reference frequency generator could be enabled by EN_OSC = "1". It could operate in two modes: XTALL mode (OSC_MODE = "0") and TCXO mode (OSC_MODE = "1"). In XTALL mode external resonator is used, while in TCXO mode external TCXO provides input frequency signal, which is buffered and additionally divided. In XTALL mode external quartz resonator should be connected to XTI, XTO pins as it shown in Figure 1. In TCXO mode decoupling 2uF capacitor should be placed between TCXO output and XTO pin (see Figure 2); XTI pin should be grounded. Reference frequency generator provides two output frequencies: undivided reference frequency (CLK_REF output) and programmable (OSC_CDiv<7:0>) divided frequency (CLK_REF_DIV). In case of OSC_Div2 = "0" duty cycle of output signal is inversely proportional to frequency division coefficient, which is selected by OSC_CDiv<7:0>. To achieve 50% duty cycle at CLK_REF_DIV output there is additional division-by-two stage embedded in frequency divider, which is turned on by OSC_Div2 = "1" (see figure 3).

Figure 3: Reference frequency generator transient behavior

7 LAYOUT DESCRIPTION

7.1 TECHNOLOGY OPTIONS

ADC is designed under iHP 250 nm sg25H4 technology process with following options:

- 3 levels of thin metals and 2 levels of thick are used for routing
 - Regular Vt N/P FET
 - Rppd resistor is used
 - MIM-capacitors are used
 - Bipolar devices are used

7.2 PHYSICAL DIMENSIONS

 Table 1: Block dimensions

Dimension	Value	Unit	
Height	475	um	
Width	430	um	

Figure 4: PMU layout

- 1. XTAL
- 2. Bandgap
- 3. Reference course

8 INTEGRATION GUIDELINES

8.1 INPUT AND OUTPUT SIGNALS

It is supposed, that input control pins will be used to change operation mode only and will be unchanged during normal operation.

External resistor's ground (Rext connected resistor) should be shorted to chip ground node. Output signals rising/falling edges depends on additional capacitance connected to these pin at integration level (see figure 5).

Figure 5: Output signals timing

Load capacity for output signals CLK_REF and CLK_REF_DIV determinates by following formula:

RiseTime=1.5 (C_{routing} + 55fF), FallTime=0.55 (C_{routing} + 180fF),

where *C*_{routing} is routing capacitance.

It is recommended to keep rise and fall times lower than 5ns.

8.2 PLACEMENT AND ROUTING

The following requirements of placement and routing must be satisfied during integration:

- 1. Power supply (pin VDD) and ground (pin GND) wires should allow flowing of 1 mA DC, 2 mA peak currents and should have total resistance of less than 3 Ohm
- 2. External capacitance (not less than 10 nF) and internal capacitance should be connected to VDD pin for additional noise filtering. Internal capacitance should be as much as possible
- 3. Total resistance of wire Rext, which is used to connect external resistor (Rext = 61.9 kOhm), should not exceed 30 Ohm. Internal PAD resistance should not exceed 100 Ohm
- 4. Filtering capacitance for wire Rext should be 5-10 pF
- 5. PADs XTI and XTO should be located close to corresponding pins, total resistance at these wires should not exceed 10 Ohm for each wire
- 6. CLK_REF and CLK_REF_DIV wires are noisy, they should not be placed close to sensitive blocks and wires

PMU is an analog block, which is sensitive to power supply, ground and substrate noise. So, following items below is recommended:

7. For higher reference voltage accuracy it is necessary to make ground and supply wires as short as possible

9 OPERATION CHARACTERISTICS

9.1 TECHNICAL CHARACTERISTICS

Technology	iHP SiGe BiCMOS 0.25 um
Status	pre-silicon verification
Area	0.2 mm ²

9.2 ELECTRICAL CHARACTERISTICS

The values of electrical characteristics are specified for $V_{DD} = 2.375 \text{ V} \div 2.625 \text{ V}$, $T = 0 \text{ }^{\circ}\text{C} \div +100 \text{ }^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{DD} = 2.5 \text{ V}$, $T = 50 \text{ }^{\circ}\text{C}$.

Davamatar	Symbol	Conditions	Value			TT:4
Parameter			min	typ.	max	Unit
Supply voltage	V_{DD}	-	2.375	2.50	2.625	V
Operating temperature range	TJ	-	0	50	100	°C
Bandgap reference voltage	$V_{REF_{BG}}$	Vref_BG output	1.11	1.12	1.14	V
Bandgap reference voltage temperature dependence	$\Delta_T V_{REF_BG}$	Vref_BG output	-	-	1	%
Absolute bandgap reference voltage accuracy	ΔV_{REF_BG}	Vref_BG output	-	-	3	%
	I _{REF_1u}	based on	1			
Reference output currents	$I_{REF_{2u}}$	external/internal	-	2	-	uA
	$I_{REF_{22u}}$	resistor		22		
Paferance voltage load resistance	R _{LOAD}	Buffered	2	-	-	kOhm
Reference voltage load resistance		Unbuffered	1	-	-	MOhm
Reference output frequency	$\mathbf{F}_{\mathbf{REF}}$	CLK_REF output	32	-	140	kHz
Divided output frequency	F_{REF_DIV}	CLK_REF_DIV output	0.5	32	F _{REF}	kHz
Duty cycle	D	$OSC_Div2 = "1"$	40	50	60	%
Current consumption	I _{DD}	Active mode: Total	-	TBD	TBD	uA
	I _{STB}	Standby mode	-	0.1	10	nA
Input logic high level	V _{IH}	for digital inputs	V _{DD} -0.25	-	V _{DD} +0.25	V
Input logic low level	V _{IL}		-0.25	-	0.25	V
Max load capacity	C_{load_max}	On Vref_BG output	-	-	5	pF

9.3 TYPICAL OPERATING CHARACTERISTICS

Figure 6: Bandgap Monte Carlo simulation. Vref_BG output. STD = 7.5mV

Figure 7: Bandgap buffer Monte Carlo simulation. Vref_BG_BUF output. STD = 8.4mV

Figure 8: Bandgap voltage vs temperature simulation. Vref_BG output

Figure 9: Frequency generator start behavior. XTALL mode

Figure 10: Frequency generator start behavior (detail). XTALL mode

Figure 11: Bandgap reference voltage and reference current sources power on behavior

10 DELIVERABLES

Depending on license type IP may include:

- Schematic or NetList
- Abstract view (.lef and .lib files)
- Layout (optional)
- Verilog behavior model
- Extracted view (optional)
- GDSII
- DRC, LVS, antenna report
- Test bench with saved configurations (optional)
- Documentation